Materialforschung: Vom Atom zum fertigen Werkstück
Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich metallischen Werkstoffen für die Industrie. Unterstützt wird es vom Wirtschaftsministerium (BMDW) und den Firmenpartnern voestalpine, Neuman Aluminium und Stahl Judenburg.
Es ist eine Herausforderung, die in vielen Industriebereichen immer wieder eine wichtige Rolle spielt: Man benötigt metallische Werkstoffe, die extremen mechanischen Belastungen standhalten oder unter korrosiven Umwelteinflüssen über lange Zeit beständig sind - beispielsweise Schwerlast-Schienen, Walzlager oder Rohre für die Öl- und Gasindustrie. Ein weiteres wichtiges Thema ist die Gewichtsreduktion unter Beibehaltung hervorragender Eigenschaften, gerade in Hinblick auf Nachhaltigkeit und Kosten. Beim Entwickeln solcher Materialien war man lange Zeit auf Versuch und Irrtum angewiesen. Mittlerweile gibt es allerdings Methoden, am Computer die Eigenschaften von Materialien vorherzusagen.
An der TU Wien wurde nun ein neues Christian Doppler Labor eingerichtet, in dem das Zusammenwirken chemisch-physikalischer Phänomene mit hochauflösenden Analysenmethoden charakterisiert, in Modelle gegossen und am Computer genau simuliert wird, um bessere Materialien für die Industrie zu entwickeln. Die offizielle Eröffnungsfeier fand am 24.5.2018 statt. Unterstützt wird das CD-Labor vom Bundesministerium für Digitalisierung und Wirtschaftsstandort (BMDW) sowie von den Partnerunternehmen voestalpine, Neuman Aluminium und Stahl Judenburg.
"Österreich produziert Stahl und Aluminium mit hohen Qualitätsanforderungen und exportiert diese weltweit", sagt Dr. Margarete Schramböck, Bundesministerin für Digitalisierung und Wirtschaftsstandort. "Basis für diesen Erfolg ist intensive grundlagenwissenschaftliche und technologische Forschung, die für die Fortführung dieser Erfolgsgeschichte auch weiterhin nötig ist. CD-Labors bieten dafür einen optimalen Rahmen, weil sie neues Wissen für Unternehmen nutzbar machen und so echte Innovation und dauerhafte Marktvorteile ermöglichen."
Computersimulation statt Versuch und Irrtum
Um die Materialeigenschaften eines Werkstücks genau zu verstehen, muss man es auf unterschiedlichen Größenskalen gleichzeitig betrachten - und genau darin liegt aus wissenschaftlicher Sicht die große Herausforderung: "Man muss die Mikrostruktur im Nanometerbereich kennen und verstehen, wie die Atome miteinander wechselwirken. Gleichzeitig muss man das Material auf mittelgroßer Skala untersuchen - da kann es etwa Bereiche unterschiedlicher Kristall-Ordnung geben. Schließlich muss man das Verhalten des ganzen Werkstücks unter Belastung analysieren, um die Auswirkungen der typischen Prozesstemperaturen und Krafteinwirkungen zu berechnen", erklärt Prof. Erwin Povoden-Karadeniz. Er leitet das neue CD-Labor am Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien.
Gerade bei metallischen Werkstoffen gab es in den letzten Jahrzehnten große Fortschritte. "In vielen Experimenten hat man untersucht, wie die mechanischen Eigenschaften des Materials mit der Mikrostruktur zusammenhängen und wie man diese Mikrostruktur durch die geeignete Wahl der Legierung und durch den Herstellungsprozess beeinflussen kann", sagt Povoden-Karadeniz. "Allerdings sehen wir heute, dass die Werkstoffwissenschaft in diesem Bereich ein gewisses Plateau erreicht hat. Für weitere Fortschritte brauchen wir neue Ideen."
Und diese Ideen kommen aus neuartigen Computersimulationen: "Das computersimulations-basierte Materialdesign gewinnt immer mehr an Bedeutung", ist Povoden-Karadeniz überzeugt. "Die Anzahl der erforderlichen Experimente sinkt dadurch, mit den passenden Rechenmodellen kann man das Verhalten des Materials schon vorhersagen, bevor man es überhaupt hergestellt hat." Dadurch lässt sich die Zeit, die von der Innovationsidee bis zur Marktreife eines Produktes verstreicht, drastisch verkürzen.
Besonders herausfordernd ist die Aufgabe, die unvermeidlichen Unregelmäßigkeiten im Material korrekt zu berücksichtigen. Bei einem realen Werkstück hat man es nun mal nicht mit einem perfekten Kristall zu tun, sondern mit einer Vielzahl kleiner Störungen und mit Grenzflächen zwischen winzigen Materialkörnern. Nur wenn man sie im Computermodell korrekt berücksichtigt, erhält man brauchbare Ergebnisse - und genau auf solche komplizierten Aufgaben haben sich Erwin Povoden-Karadeniz und sein Team spezialisiert.
Ãœber Christian Doppler Labors
In Christian Doppler Labors wird anwendungsorientierte Grundlagenforschung auf hohem Niveau betrieben, hervorragende WissenschafterInnen kooperieren dazu mit innovativen Unternehmen. Für die Förderung dieser Zusammenarbeit gilt die Christian Doppler Forschungsgesellschaft international als Best-Practice-Beispiel.
Christian Doppler Labors werden von der öffentlichen Hand und den beteiligten Unternehmen gemeinsam finanziert. Wichtigster öffentlicher Fördergeber ist das Bundesministerium für Digitalisierung und Wirtschaftsstandort (BMDW).
Rückfragehinweis: Prof. Erwin Povoden-Karadeniz Institut für Werkstoffwissenschaften und Werkstofftechnologie Technische Universität Wien Getreidemarkt 9, 1060 Wien T: +43-1-58801-30846 erwin.povoden-karadeniz@tuwien.ac.at
Aussender: Dr. Florian Aigner Technische Universität Wien PR & Marketing Resselgasse 3, 1040 Wien T: +43-1-58801-41027 florian.aigner@tuwien.ac.at
TU Wien - Mitglied der TU Austria www.tuaustria.at